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The way in which energy propagates away from a two-dimensional oscillatory 
disturbance in a thermocline is considered theoretically and experimentally. It is shown 
how the St. Andrew’s-cross-wave is modified by reflections and how the cross-wave can 
develop into thermocline waves. A linear shear flow is then superimposed on the 
thermocline. Ray theory is used to evaluate the wave shapes and these are compared 
to finite-difference solutions of the full Navier-Stokes equations. 

1. Introduction 
A horizontal cylinder, oscillating with frequency w in a density-stratified fluid with 

a background natural frequency N ,  will produce a St. Andrew’s-cross-wave with the 
four arms, or beams of energy, inclined at angles of 0 = T sin(w/N) to the horizontal 
(see the reviews by Roberts 1975 and Lighthill 1978). The ray paths along which the 
energy propagates are coincident with the lines of constant phase. Point disturbance 
theory predicts an infinitesimally thin beam in each direction, whereas in experiments 
the beams have a finite width over which the phase varies. If the point disturbance had 
been moving with a mean velocity relative to the fluid, all wavenumbers would be 
uniquely determined by a Doppler relation and the wave spacing over the whole of the 
far field would be known even from the inviscid point disturbance theory (see 
Stevenson 1973). The width of the beams from an oscillatory disturbance can be 
determined theoretically by satisfying the boundary conditions around a finite-sized 
body (see for example Appleby & Crighton 1986; Voisin 1991). Viscosity produces the 
increase in width of the beams with distance from the source that is observed 
experimentally (see Thomas & Stevenson 1972 and Gordon, Klement & Stevenson 
1975). A linear viscous analysis (Makarov, Neklyudov & Chashechkin 1990) shows 
how the amplitude distribution in the beams depends on the size of the body; larger 
bodies produce twin-peaked distributions. Kistovich, Neklyudov & Chashechkin 
(1990) show how nonlinear effects can produce several harmonics which propagate in 
the directions given by linear theory for the fundamental frequency. 

When the natural frequency N varies with height the beams from an oscillatory 
disturbance are curved and reflections occur at a level where N = w (see Phillips 1966). 
The present paper uses ray theory, finite-difference calculations and experiments to 
show the way in which the beams, after several reflections within a thermocline, 
eventually produce the ‘thermocline waves’ of the type described by Krauss (1966) and 
Thorpe (1968). The effects of a shear flow, in which the background velocity varies 
linearly with height, are then included and it is shown that there is less tendency to 
produce thermocline waves. The finite-difference method used to solve the full 
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Navier-Stokes equations is based on the ‘marker and cell’ method of Harlow & Welch 
(1965) and Young & Hirt (1972). The method was extended to a moving body in a 
stratified fluid by Nicolaou (1987) and open boundaries were included by Liu & 
Stevenson (1989). The program was used to study a cross-wave in a shear flow with 
constant N (Liu, Nicolaou & Stevenson 1990). 

2. Ray paths and the phase configuration 
A coordinate system [x, z] is defined with the origin on the thermocline centreline and 

with x and z positive to the right and vertically upwards respectively. The mean 
position of the oscillatory disturbance is at [O,z,]. The background stratified fluid is 
stable with a natural frequency distribution N(z)  and with a background horizontal 
flow U(z). Ray theory for this problem was given by Liu et al. (1990) and is based on 
that of Stevenson (1973). Under the WKB approximation the propagation of energy 
at a point is described by the group velocity equations which apply to a uniform 
stratified flow with a constant natural frequency. The energy moves on ray paths along 
which the horizontal wavenumber component k and the frequency OJ are constant. The 
frequency relation (Bretherton 1966) is 

(1) 
where w, is the frequency relative to the fluid and o is the oscillatory frequency of the 
source. Umust be zero at the level of the source otherwise a steady lee wave system will 
be superimposed on the oscillatory waves. 

w = w,(z) + kU(z),  

The dispersion relation is 

where the wavenumber is k = [k, m] and O(z) is the angle that the ray path makes with 
the horizontal in a frame of reference moving with the background flow at that level. 
8(z) is measured anticlockwise from the positive x-direction. The ray paths are defined 
by 

dx dz 
__ = U +  ugr and dt = wgr, dt (3) 

where [ugr, wgr] is the group velocity relative to the background fluid. The relation 
k = -m tan B satisfies the condition that the phase velocity is directed towards the 
horizontal level from which the energy is propagating. From this relation and (2) the 
group velocity (ao,/ak, aw,/am] is given by 

(4) 
The direction in which energy propagates along a ray path is determined from the 
radiation condition which implies that dt > 0. From (3) and (4), noting that. dz and sin 
0 have the same sign, the condition is k / ( w ,  cos 8) > 0. At the position of the source 
where U = 0 the energy begins to propagate along the four beams. At time t the phase 
of the energy which left the disturbance at time t ,  is 

[ugr, wgr] = w, k-l sin 8 cos 8 [cot 0,1]. 

4 =-mot,+ (kU--w)dt+#, = -@wt+F+$,, ( 5 )  
where, from (3), 

J t ,  



Thermocline waves from an oscillatory disturbance 403 

(b) 

FIGURE 1. Schlieren photographs and the corresponding phase configuration from equation (9) for 
a horizontal cylinder oscillating with (a) D = 0.69 and (b) 0.91 in a thermocline with no background 
flow. The width of each picture is 390 mm, E = 325 mm and No = 1.02 rad/s. The black vertical line 
at the top of the photographs is the cylinder support. 

In (5)’ ot, is the phase of the source at time t , ,  z ,  is the vertical position of the source 
and q5R is the sum of the phase shifts which occur at the caustics. The lines of constant 
phase may be evaluated from (5)  and (6) together with an equation for the ray paths 
derived from (3), (4) and (6)’ 

(7) 

Ray theory cannot strictly be taken to the caustic where o, = N(z)  but, as was shown 
by Lighthill (1978) for a uniform flow and by Liu (1989) for a sheared flow, ray theory 
can be matched to an Airy function which ‘heals’ the solution. The phase shift in time 
as the wave reflects is a $c lag in the vertical velocity component and a $I lead in the 
horizontal velocity component. 

x = [,cot Bdz+-. F 
k 

3. Waves in a thermocline 
From (2)’ (6 )  and (7) when U = 0 the ray paths are given by 

A hyperbolic tangent density profile (Groen 1948) with its corresponding natural 



404 D .  Nicolaou, R.  Liu and T. N .  Stevenson 

FIGURE 2. Schlieren photographs showing the development of thermocline waves from St. Andrew’s- 
cross-waves when there is no background flow. The cylinder is oscillating in a horizontal plane which 
produces odd-mode thermocline waves. N ,  = 1.34 rad/s, e = 188 mm and B for (a) is 0.62, (b) 0.75 
and (c) 0.88. A strong n = 1 mode is shown in (c). The width of the pictures is 450 mm. 

frequency distribution N(z) = N ,  sech (2z/s), is often used to represent a thermocline. 
N ,  is the natural frequency at the centre of the thermocline and E is a thermocline 
thickness. With this distribution the ray path and the phase configuration are given by 

X = G(Z)  - G(Zl), 

(1 -02cosh2Z)i (1 - sz”i 

(9) 

(10) 

where 
sinh Z }-sin-’{ 52 sinh 2 }. G ( Z )  = 52-1 tan-l 

X = ~ x / E ,  Z = ~ z / E ,  Z ,  = 2zJe and f2 = W I N , .  
In figure 1 the phase configurations from this equation are compared with schlieren 

photographs showing wave beams from an oscillating cylinder which is above the 
centreline of a thermocline. If the horizontal distance between consecutive upper and 
lower caustics on a ray is 2xc (see figure 1) then from (10) 

(1 1) 
where the subscripts U and L refer to the upper and lower caustics. All the photographs 

Xc = ~ x , / B  = G(2,) - G(2,) = ~(52-l-  l), 
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FIGURE 3. The cylinder is oscillating in a vertical plane and an n = 0 thermocline mode is produced. 
N, = 0.76 rad/s, E = 170 mm and a = 0.92. There is no background flow. The width of the picture 
is 450 mm. 

FIGURE 4. Composite interferograms showing the waves from a vertically oscillating cylinder 
producing even thermocline modes with no background flow. N, = 1.62 rad/s, B = 140 mm and 52 for 
(a) is 0.8 and for (b) 0.95. The width of the pictures is 95 mm. 

in this paper are taken through the glass sides of a tank of stratified brine, looking 
along the axis of a horizontal cylinder which is supported on a strut from the top of 
the tank. The thermocline in the tank was produced by allowing an interface between 
water and brine to diffuse; the diffusion profile is close to a hyperbolic tangent profile 
(Stevenson, Kanellopulos & Constantinides 1986). In figure 1 (b), w is equal to N(z,) at 
the level of the cylinder so that wave energy cannot propagate above the cylinder. The 
beams bend towards the vertical as the waves propagate into regions of lower N(z),  
reflect at the upper and lower caustics where N(z)  = w and generally propagate 
horizontally with the thermocline acting as a wave guide. The ray paths which are also 
isophase lines have a point of inflexion at the centre of the thermocline and along each 
ray there is a $c phase change after every reflection. 

The schlieren photographs in figure 2 show how waves from an oscillating cylinder 
develop into thermocline waves. The initial width of the arms depends on the size of 
the body and on the amplitude of oscillation. The waves spread as a result of the effects 
of viscosity and wave path curvature and eventually, sufficiently far from the body, the 
energy fills the whole of the thermocline between the caustics; a little energy does 
penetrate into the regions where N(z) < w but the velocities fall off exponentially in 
these regions. As the beams widen to fill the thermocline, there is a transition to 
thermocline waves. Between the body and the region of thermocline waves there is a 
complicated web of wave-wave superpositions as an increasing number of widening 
waves overlap. Thermocline waves develop closer to the body for higher values of i2 
or higher ratios of body width to thermocline width. 
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FIGURE 5. (a) Velocity vectors, and (b, c) density perturbation contours: (a) and (b) are from finite- 
difference computations and (c) is from Thorpe’s (1968) solution for an infinite train of waves in an 
inviscid thermocline. The contour which crosses the centreline in (b)  has a value very close to zero and 
its meandering is a result of numerical errors. N ,  = 1.34 rad/s, e = 188 mm and D = 0.88. The height 
of each diagram is 200 mm. There is no background flow. 

Thermocline waves consist of discrete modes which are eigenfunction solutions of 
the governing equations. The mode number n is the number of vertical-velocity- 
component sign changes which occur across a vertical section through the thermocline 
(Lighthill 1978). A cylinder oscillating in a horizontal plane produces odd modes 
(figure 2) and oscillating in a vertical plane produces even modes as shown by the 
schlieren photograph in figure 3 and the composite interferograms of figure 4 which 
show both background fringes and perturbed fringes (see Laws, Peat & Stevenson 
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on contours; for (a) and RE 6. (a) Instantaneous velocity vectors and (b, c) density perturba 
(b) the cylinder is oscillating in a horizontal plane and for (c) in a vertical plane. Finite-difference 
computations when there is no background flow. N ,  = 1.34 rad/s, E = 188 mm and SZ = 0.6. The 
height of each diagram is 320 mm. 

1982; Kanellopulos 1982). Figures 3 and 4(6) show the beams very quickly dis- 
appearing and producing zero-mode thermocline waves which move out horizontally 
from the source in each direction. 

Figures 5 (a) and 5 (b) show velocity vector plots and density perturbation contours 
from the finite-difference program under conditions similar to the photograph of figure 
2 (c). Figure 5 (c) shows the corresponding inviscid thermocline waves from the theory 
of Thorpe (1968). There is an error of 12 % in the wavelength between the theories and 
the experiment but this could be a result of a 5 YO error in 6 which is within the possible 
experimental errors. Even though the direction of the vectors cannot be seen in the 
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near the body developing into a mode n = 1 oscillation further to the right. A vertically 
oscillating body (figures 6 c  and 7c) shows the same process of trapped waves 
developing through a high-mode thermocline oscillation to a low-mode one but in this 
case showing even modes. 

4. The transition to thermocline modes 

trapped wave condition derived by Lighthill (1978), 
The horizontal wavenumber of the thermocline waves can be determined from the 

l: m(z) dz = 3 ~ ( 2 n  + l), (12) 

where m(z) from the dispersion relation (2) is 

For the profile N(z)  = N, sech 2, equation (12) becomes 

where K = ks, so that, using (1 1) 
(2n + 1) x = K(G(2,) - G(Z,)}, 

(2n+ 1)sZ 
1 - 9  * 

K =  

An alternative relationship was derived by Krauss (1966) and Thorpe (1968). The 
equation for the vertical velocity within a train of thermocline waves together with the 
boundary conditions that this velocity+O as z+ f co yield solutions in terms of 
hypergeometric functions with the dispersion relation 

This equation reduces to (14) providing (1 - Q2)/(2n + 1)' + 0, which corresponds to 
large K.  It follows that, for a fixed frequency, (14) is a good approximation for the 
higher-mode thermocline waves. The ray theory and Airy integral formulation which 
was used to derive (14) is poor for the lowest two modes, n = 0 and 1, see Lighthill 
(1978). 

A number of experimental and numerical examples of the transition to thermocline 
oscillations have been given in the preceding section. This transition is a result of the 
action of viscosity, wave path curvature and the superposition of waves. A very simple 
model will enhance the understanding of this transition. We consider the energy leaving 
the source to the right along the upgoing and downgoing rays. The wave in each ray 
is assumed to have the form shown in figure 8 (a) with a wavelength h and an envelope 
of width W which increases with distance along the ray as the amplitude decreases. At 
a fixed time the phase distribution within the envelope remains constant along a ray 
except after each caustic, where the phase changes by in. The way in which the waves 
interact can now be found by summing the waves in all the beams that overlap at any 
point in the wave field. As an example, when these amplitudes are summed at a fixed 
height in the thermocline the amplitude distribution looks like that in figure 8 (b) which 
shows 'resonant' groups. The wavelength A,  within the individual groups is constant 
and equal to that given by (14), with the last group to the right being the lowest mode. 
It is found that the number of groups between the lowest-mode group and the source 
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FIG& 8. (a) An example of the amplitude distribution within a beam. (b)  The resonant wave groups 
from a superposition of waves at a fixed height in the thermocline. (c) As for (b) but with a spread 
rate taken from the viscous similarity solution. 

increases as the wavelength h at the source decreases. Whether even or odd modes 
develop depends on the initial waveforms leaving the source. If the upgoing and 
downgoing waveforms are the same then odd modes are produced and if there is a 
phase difference of 'IC then even modes are produced. Destructive interference results in 
the small amplitudes between the groups. With R defined as the spread rate dW/dE, 
where f is the distance measured along the ray path from the source, and d is the 
distance between the thermocline wave groups A and B then, for fixed SZ, the distance 
d decreases as R increases. For R = 0 the original waveform along the rays is repeated 
every time the rays cross the height level being considered and no thermocline waves 
develop unless W 9 2x,, and h equals a thermocline-mode wavelength. 

A small spread rate was used to construct figure 8 (b) in order to separate the modes. 
When the width Wand the amplitude along the ray path vary as ,$ and [-$ respectively, 
as in the viscous similarity solution of Thomas & Stevenson (1972) then the modes 
overlap as shown in figure 8 (c). Changes to the wave width W from curvature effects 
have not been included. These variations of width and amplitude have also been used 
to construct figures 9 ( a k 9 ( d )  which are similar to figures 2(a)-2(c) and 4(b)  
respectively. The intensity of the greys in the figures is proportional to density gradient. 
The good agreement suggests that the mechanisms leading to the transition from a 
trapped cross-wave to thermocline oscillations have been satisfactorily modelled. 

The dimensionless wavelength of thermocline waves, AT = 2hT/e is, from (14), 
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FIGURE 9. The development of thermocline waves using the simple physical model. ( a d )  correspond 
to the experiments shown in figures 2(+2(c) and 4(b) respectively. 

Comparing this with (1 1)  gives 
A T = -  4xc 

2 n + l ’  

Thus the number of complete wavelengths within a distance 4Xc is (2n + 1)  and for the 
lowest mode, n = 0, there are four reflections of a ray path within a wavelength. 

14-2 
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FIGURE 10. Finite-difference computations showing how the waves in a thermocline are modified 
when there is a shear flow, U(z), with a constant velocity gradient s. N ,  = 1.1 rad/s, E = 240 mm and 
f2 = 0.67. (a), (b) and (c) The velocity vector plots and the corresponding shear profiles with s = 0.01, 
0.04 and 0.1 s-’ respectively. (d )  The sech natural frequency distribution (which is the same for all the 
diagrams in this figure). (e) Schlieren photograph with conditions similar to (c) (MacIver 1988). 

5. Waves in a thermocline with a linear shear 
The way in which internal waves behave in a linear shear flow when the background 

natural frequency is constant was studied by Liu et al. (1990). It was shown that the 
isophase lines and the ray paths are not coincident as they are for an oscillatory 
disturbance in a quiescent stratified fluid. This section considers the way in which shear 
modifies the waves from an oscillatory source in a thermocline. 

To show how shear modifies the wave pattern three examples are given in figure 10 
with all parameters constant except for the shear velocity gradient. The perturbation 
velocity vector plots are from the finite-difference calculations. There is no initial 
background flow at the level of the body so that a steady wave system will not be 
superimposed on the oscillatory system. Above and below the body the background 
flow has initially a constant gradient, s = dU(z)/dz. The initial velocity profile is 
modified during the computation by the oscillating cylinder’s upstream and 
downstream wakes and by the exchange of energy between the waves and the 
background flow (see Bretherton 1966; Koop & McGee 1986). Figures lO(a)-lO(c) 
show how the waves are modified with increasing velocity gradient s, and figure 10 (e) 
shows a schlieren photograph with conditions which correspond to figure lO(c). The 
shear has modified the wave patterns considerably and for the higher values of s has 
limited the extent to which thermocline waves develop. 

Figure 11 shows ray paths and constant phase lines from the theory of $2 over a 
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FIGURE 1 1 .  Isophase lines (-) and ray paths (-). The conditions are the same as those in figures 
lO(c) and lO(e) with a range of wavenumbers from 0.1 to 300 m-l. The phase shift at a reflection is 
not included. 

much wider range of wavenumbers than appear in figure lO(c). As the wavenumber 
approaches zero, the ray lines and the isophase lines become coincident, the shear 
having no effect. The higher wavenumbers travelling with the flow (A in figure 11) tend 
towards a critical level where they are absorbed by the mean flow (Koop & McGee 
1986). The lower wavenumbers (B) however continually reflect at the caustics with the 
lowest wavenumbers reflecting at a lower level. The energy propagating against the 
background flow reflects back towards the centre of the thermocline, the lowest wave 
numbers travelling the furthest distance before reflection. 

These features and the influence of the N(z)  and U(z) distributions on energy 
propagation will now be analysed. From (1) and (2) 

sin O(z) = (w - kU(z)}/N(z). (17) 

Considering the solution for w, 2 0, because w, < 0 gives a duplicate solution, and 
using U(z) = sz then (17) becomes 

(18) 
kss sech ( Z )  lsin O(z)l = Q -~ 2Ncz' 

Reflection occurs when 8-t k i n  which gives 

ksE/N, = (52 - sech Z,,,)/~Z,,,), (19) 

and transfer of energy occurs at critical levels where O(z) + 0 which gives 
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FIGURE 12. The height at which the energy of a particular wavenumber reaches either a critical level 
or reflects back towards the centre of the thermocline. The dashed line separates the low 
wavenumbers which reflect from the higher ones which reach a critical level. 

Z,, and ZctIt are the levels where either reflection or absorption occurs for the 
wavenumber under consideration. The curves for three different values of 52 are shown 
in figure 12. For energy travelling in the same direction as the background shear flow 
the shear and the natural frequency have opposite effects on the ray paths. The natural 
frequency tends to bend the ray paths towards the vertical while the shear tends to bend 
the rays towards the horizontal. For fixed 52, there exists a wavenumber, k, say, such 
that energy with wavenumber k > k,  will be absorbed and with k d k, will be reflected. 
The wavenumber k, can be determined by differentiating (19) with respect to Z,., and 
equating dk/dZ,, to zero so that 

k, se 
~ = 2 sech Zref tanh Zrep 
NC 

The curve from this equation is shown as the dashed line in figure 12 and represents 
the upper limit for the wavenumber beyond which energy is absorbed rather than 
reflected. Along the vertical axis where kse/Nc = 0 the crossings of the caustic curves 
(19) occur at Z,, = sech-l(Q) and correspond to the caustics in an unsheared 
thermocline. kss/N,+ f co corresponds to a sheared fluid with constant natural 
frequency. 

Energy which is propagating against the background flow has both the natural 
frequency distribution and the shear acting to bend the rays towards the vertical. The 
energy will therefore reflect at a shorter distance from the body than would be the case 
if shear were not present. Once reflected, the energy will pass the level of the body and 
behave like the energy of the same wavenumber which propagated away from the body 
in the direction of the background shear flow. 
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FIGURE 13. A horizontally oscillating body in a thermocline with N ,  = 1.1 rad/s, E = 240 mm and 
8 = 0.9, as in figure 5, but now in a shear flow with s = 0.1 s-l. (a) Vertical velocity distribution at level 
A during an oscillation period. (b) Velocity vector diagram. (c) Distribution of the horizontal velocity 
perturbation across the vertical plane at B. 

The effect of shear on the cellular thermocline waves of figure 5 is shown in figure 
13 (b). Distorted mode n = 1 cells are visible near the body but decay rapidly away from 
the body as a result of energy being lost to the mean flow. Some perturbation velocity 
distributions during one oscillation period are shown in figures 13(a) and 13(c). The 
horizontal velocity perturbation is the difference between the velocity distribution 
during the oscillation and the original background flow at the beginning of the 
computation which is the same as that in figure lO(c). The ‘kinks’ in the horizontal 
velocity perturbations along horizontal lines at the top and bottom of the cylinder 
correspond to the difference between this initial profile and the smoothed profile which 
develops after the start. 

6. Conclusions 
Internal waves generated by an oscillating body in a thermocline have been studied 

experimentally, theoretically and numerically. Linear theory under the WKB 
approximation was shown to give a good representation of the wave patterns when the 
wavelength is small compared to the thickness of the thermocline. A simple physical 
model of widening and superimposing wave beams in a thermocline has reproduced the 
main features of the transition to thermocline waves. It was shown how the transition 
proceeds from high-mode oscillations through to the lowest odd or even mode 
depending on the direction of the body oscillation. The transition from a trapped cross- 
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wave into the mode thermocline oscillation occurs over a shorter distance as A / €  
increases. The presence of shear flows can inhibit the development of thermocline 
waves because wave energy is absorbed into the background flow near critical levels. 

The work was supported by the Procurement Executive, Ministry of Defence. 
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